

Cambridge International AS & A Level

CANDIDATE NAME

CENTRE CANDIDATE NUMBER NUMBER

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 11_9709_33/FP © UCLES 2020

[Turn over

2

BLANK PAGE

© UCLES 2020 9709/33/O/N/20

Solve the inequality $2 - 5x > 2 x - 3 $.	[4]
$\left(2-5x\right)^2 7 \left(2(x-3)\right)$	
A-2D-12C-2 $-1(-2)$	
$4-20x+25x^2>4(x^2-6x+9)$ $4-20x+25x^2>4x^2-24x+36$	
2122+42-32>0	
$x = \frac{5}{7} - \frac{4}{3}$	
NOT VALID $2/2-3$ FOR $2-5x-2/2-3$	
FOR 2-5'C'	
2<-4 3	

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

© UCLES 2020 9709/33/O/N/20

3 The parametric equations of a cur	rve	are	е
-------------------------------------	-----	-----	---

$$x = 3 - \cos 2\theta$$
, $y = 2\theta + \sin 2\theta$,

for $0 < \theta < \frac{1}{2}\pi$

Show that $\frac{dy}{dx} = \cot \theta$.	[5]
---	-----

 $\frac{dx = 28 \text{in} 20}{d0} = \frac{2}{4} + \frac{2}{4} \cos 2\theta$

 $\frac{dy}{dx} \longrightarrow \frac{dy}{d\theta} \times \frac{d\theta}{dx}$

 $\frac{2+2\cos 20}{2\sin 20} \longrightarrow \cancel{Z}(1+\cos 20)$ $2\sin 20$ $\cancel{Z}\sin 20$

2 cos O	W20 ~
&sin0cos0	sinO

	0.1	. 4		
4	Solve	the	ec	uation

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$
Give your answers correct to 3 decimal places. [6]
$\log_{10}(2x+1) = \log_{10}(x+1)^2 - 1$
J18 C / J10 C /
$\log_{10}(x+1)^2 - \log_{10}(2x+1) = 1$
$\log_{10}\left(\frac{(x+1)^2}{2x+1}\right) = 1$
$(2+1)^2 = 10$
27+1
$x^{2} + 2x + 1 = 20x + 10$
$\chi^{2} - 18\chi - 9 = 0$
x = 18·487, -0·487
7 - 10 - 181 , 0 - 481

© UCLES 2020

(b) The sequence of values given by the iterative formula

$$x_{n+1} = \pi - \sin^{-1} \left(\frac{1}{e^{-\frac{1}{2}x_n} + 1} \right),$$

with initial value $x_1 = 2$, converges to one of these roots.

Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Express $\sqrt{6} \cos \theta + 3 \sin \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Stavalue of R and give α correct to 2 decimal places.	[3]
$R\cos(0-\kappa) = R\cos0\cos\alpha + R\sin0\sin\alpha \rightarrow 3$	
	_,
16	115
Parce TC & Parce 2	V6
$R\cos\alpha = \sqrt{6} + \sqrt{8} + \sqrt{8} = 3$	
$\tan \alpha = 3 \longrightarrow \infty = 50.77$	
V6	
Rsin x = 3	
JIS	••••••
$\frac{3}{2}R = \frac{3}{5} $ so $R = \sqrt{15}$	
415	
	••••••
	•••••

© UCLES 2020

(b)	Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for	$r 0^{\circ} < x$	x < 360°.	[4]	
		. ک			
	3		. <u>Q</u>		
	<i>9</i>				-
	65 (x-50.77°)=	115		the introduction	7
	$\omega_{S}\left(\frac{x-50.77^{\circ}}{3}\right)=$	7 7	b	th grack	
		b	SY 9	1 K	
	$\mathcal{H} = \{0.77^{\circ} = \omega S^{-1} / \sqrt{15}$	-)	2		
	3	<u></u>			
		<i>]</i>			
	2-50.77° = 49.8° E	x_	- So.77° = 21	0.203	
	3	<u></u>	(invalud bc	2 put ofram	a
	0		Thirtians So.		1
	x = 301.7°				
				••••••	
	/				
				••••••	
				•••••	
				••••••	

7	(a)	Verify that $-1 + \sqrt{5}i$ is a root of the equation $2x^3 + x^2 + 6x - 18 = 0$. [3]
		$2(-1+\sqrt{5}i)^{3}+(-1+\sqrt{5}i)^{2}+6(-1+\sqrt{5}i)-18=0$
		$(-1+\sqrt{5}i)^3 = 14-2\sqrt{5}i \left(-1+\sqrt{5}i\right)^2 = -4-2\sqrt{5}$
		2(14-2551)+(-4-2551)-6+6551-18=0
		$28-4\sqrt{5}i-4-2\sqrt{5}i-6+6\sqrt{5}i-18=0$ $0=0$
		<u> </u>

© UCLES 2020

Find the other roots of this equation. [4]
Conjugate of - 1+JSi is also a roof which is -1-JSi
Sum of -1+J5i and -1-J5i is -2
Product of -1+JSi & -1-JSi is 6
Quadratic factor with zeros at x = - 1+15i and x = -
is z2-x (Sum of roots) + (Product of roots)
z^2+2x+6
21-3
$x^{2}+2x+6\sqrt{2x^{3}+x^{2}+6x-18}$
$-(2x^3+4x^2+12x)$
-32-6X-18
-(-3x -6x-18)
X
The other root is $2x-3=0 \rightarrow x=\frac{3}{2}$

8	The coordinates (x, y) of a general point of a curve satisfy the differential equation
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
$\int \frac{dy}{y} = \int \frac{1-2x^2}{x} dx$	
$lny = \int \frac{1}{\pi} - 2\pi dx$	
$lny = lnx - x^2 + C$	
Use (1,1) to find the value of C	
$lu1 = lu1 - 1^2 + c$ so $c = 1$	
$\ln y = \ln x - x^2 + 1$	
$\ln y - \ln x = 1 - x^2$	
$\ln y - \ln x = 1 - x^2$ $\ln \left(\frac{y}{x}\right) = 1 - x^2$	
$y = \chi e^{1-x^2}$	
J	

© UCLES 2020

- 9 Let $f(x) = \frac{8 + 5x + 12x^2}{(1 x)(2 + 3x)^2}$.
 - (a) Express f(x) in partial fractions. A + B + C = 8 + 5x + 12x

 $|-x| 2+3x (2+3x)^{2}$ $A(2+3x)^{2}+B(2+3x)(1-x)+C(1-x)=8+5x+12x$

A $(4+12x+9x^2)+B(2+x-3x^2)+C(1-x)=8+5x$. Compare the coefficients of x^2 on both sides

[5]

Compare the wefficients of x on both sides

Compare the constants on both sides

4A + 2B + C = 8

12A + $(3A-4)-C=S \longrightarrow 15A-C=9(4)$ (1) into (3)

 $4A+2(3A-4)+C=8 \rightarrow 10A+C=166$

(4) = (5)15A-9 = 16 - 10A

25A = 25 so A = 1 , B = -1 & C = 6

 $\frac{1}{1-1} - \frac{1}{2+3x} + \frac{6}{(2+3x)^2}$

© UCLES 2020

b)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 .	
	$(1-x)^{-1}-1(2+3x)^{-1}+6(2+3x)^{-2}$	
	$(2+3z) \longrightarrow 2^{-1} \left(1+3z\right) \longrightarrow \frac{1}{2} \left(1+3z\right)^{-1}$	
	$ (2+3x)^{-2} \longrightarrow 2^{-2} \left(1+\frac{3}{2}x\right)^{-2} \longrightarrow \frac{1}{4} \left(1+\frac{3}{2}x\right)^{-2} $	
	$\frac{(1+x+x^2)-\frac{1}{2}(1-3x+9x^2)+\frac{6}{4}(1-3x+27x+27x+27x+27x+27x+27x+27x+27x+27x+27$	2
	2 -11x+10x²	

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a)	Find the exact coordinates of M . $\frac{dy}{dx} = \int_{-\infty}^{\infty} \left(2 - x \right) e^{-\frac{1}{2}x}$	[5]
	$u = 2 - x + \xi = e^{-\frac{1}{2}x}$ so $du = -1 + \xi$	
	$\frac{dv = -e^{-\frac{1}{2}x}}{dx} = \frac{dx}{2}$	
	$\frac{dy=0 \rightarrow u dv}{dz} + v du = 0$	
	$\left(\frac{\partial -\chi}{\partial x}\right)\left(\frac{-e^{-\frac{1}{2}\chi}}{2}\right) + e^{-\frac{1}{2}\chi}(-1) = 0$	
	$-e^{-\frac{1}{2}x} + 2e^{-\frac{1}{2}x} - e^{-\frac{1}{2}x} = 0$	
	$\frac{2}{2} = 2e^{-\frac{1}{2}x} \longrightarrow x = 4 + 4 = 4$	- 2
	2	e ²

© UCLES 2020

(b)	Find the area of the shaded region bounded by the curve and the axes. Give your answer in terms of e. [5]
	$\int_{0}^{2} \left(2-\chi\right) e^{\frac{-1}{2}\chi}$
	0
	$\int de^{-\frac{1}{2}x} - \int xe^{-\frac{1}{2}x}$
	-1.7
	$-4e^{-\frac{1}{2}x}-(xe^{-\frac{1}{2}x})$
	$u = x \notin \frac{dv}{dx} = e^{-\frac{1}{2}x}$ $\frac{du}{dx} = 1 \frac{dv}{dx} = -2e^{-\frac{1}{2}x}$
	$\frac{du}{dz} = 1 dx V = -2^{\ell}$
	$(xe^{-kx} \rightarrow uv - vdu)$
	$xe^{3x} \rightarrow uv - v du$
	$\left[-2\pi e^{-\frac{1}{2}x}\right] - \left[-2e^{-\frac{1}{2}x}\right]$
	$\int xe^{-\frac{1}{2}x} \longrightarrow -2xe^{-\frac{1}{2}x} + 2\left[2e^{-\frac{1}{2}x}\right]$
	$\int \chi e^{-\frac{1}{2}x} \rightarrow -2\chi e^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x}$
	$-4e^{-\frac{1}{2}x} - \left(xe^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x} + 2xe^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}\right)$
	[240 ⁻²² 7 - 4
	$\begin{bmatrix} 2xc & j &= 4 \\ 0 & c \end{bmatrix}$

- 11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} \mathbf{k} + \mu(2\mathbf{i} \mathbf{j} + \mathbf{k})$, where a is a constant.
 - (a) Given that the two lines intersect, find the value of a and the position vector of the point of intersection. [5]

P

Point Pon l has position vector (1+ax) & (2+2h)

that on m has position vector $\begin{pmatrix} 2+24 \\ 1-4 \\ -1+4 \end{pmatrix}$

 $| + a\lambda = 2 + 2u$ $2 + 2\lambda = 1 - \mu \quad \text{So} \quad \mu = -2\lambda - 10$ $1 - \lambda = -1 + \mu \quad \text{So} \quad \mu = 2 - \lambda \quad \text{D}$

 $-2\lambda - 1 = 2 - \lambda \quad \text{so} \quad \lambda = -3 + 4 = 5$

|-3a = 2 + 10 so a = -1/3

Point P is 12i-4j+4k

© UCLES 2020

)	Given instead that the acute angle between the directions of the two lines is $\cos^{-1}(\frac{1}{6})$, find the two possible values of a .
	dofm wait2j-k \qqfm v2i-j+k
	$\begin{pmatrix} a \\ 2 \\ -1 \end{pmatrix} = \sqrt{5 + a^2} \sqrt{6} \cos \theta$
	$2a-3 = \sqrt{5+a^2} \rightarrow 4a^2 - 12a + 9 = 5+a$
	1656 V6
	$4a^2 - 12a + 9 = 5 + a^2$
	6 6
	$\frac{23}{6}a^2 - 12a + \frac{49}{6} = 0$
	6
	a = 49 , 1
	$a = \frac{49}{23}$

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Eve reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridgement International Education Copyright Acknowledgements Routlet. This is produced for each series of examinations and is freely available to download.

at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9709/33/O/N/20