

Cambridge International AS & A Level

CANDIDATE NAME

CENTRE CANDIDATE NUMBER NUMBER

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 11_9709_12/2R © UCLES 2020

[Turn over

BLANK PAGE

© UCLES 2020 9709/12/O/N/20

l	The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^3$ is 20.	
	Find the value of the constant k .	[4]
	$(1+kn)(1-10\chi+40n^2-80\chi^3)$	
	-80χ³+40 kx³	
	-80+40k = 20 $k = 5$	
	2	

ind the sum to	infinity of the p	progression.				[5]
$\alpha = 2$	$0+6$, a_2	= - 2p ,	a3 = P+	2 , S	x) = 8	
7 =	-2p 2p+6	= p+2 -2p	→ 4 ₁	$p^2 = 2p$	² +10 _f)+12
	$2p^2-$	10p-12=	= 0 20	p = 6		
S_{∞}	= <u>a1</u> 1-8	= 2 (G I-)+6 (-2/3)	= 54 5		

© UCLES 2020

3	The equation of a curve is $y = 2x^2 + m(2x + 1)$, where m is a constant, and the equation of a line	e is
	y = 6x + 4. Huy have 2 repts , where $b^2 - 4ac > 0$. Show that, for all values of m , the line intersects the curve at two distinct points.	[5]
	$2x^2 + 2mx + m = 6x + 4$	[3]
	$2a^2 + 2m\alpha - 6\alpha + m - 4 = 0$	
	a=2, $b=2m-6$, $c=m-4$	
	, , , , , , , , , , , , , , , , , , ,	
	$(2m-6)^2-4(2)(m-4)>0$	
	/2m² 2/2 0 2 2 2 2 0	
	$4m^2 - 24m + 36 - 8m + 32 > 0$ $4m^2 - 32m + 68 > 0$	
	$m^2 - 8m + 17 > 0$	
	$\left(m - \frac{8}{2}\right)^{2} - \frac{1}{4}x(-8)^{2} + 17 > 0$	
	$(m-4)^2+1>0$ for all m val	ue!
		••••
		••••
		••••
		••••
© UC	CLES 2020 9709/12/O/N/20 [Turn o	ver

The sum, S_n , of the first n terms of an arithmetic progression is given by
$S_n = n^2 + 4n.$
The kth term in the progression is greater than 200. $Sn = \frac{n}{2}(2a_1 + d(n-1))$
Find the smallest possible value of k . [5]
$S = 1^2 + 4(1) = 5$ so $a_1 = 5$
$S_{2} = 2^{2} + 4(2) = 12 \text{So} 12 = 2 \left(2(5) + d(2-1)\right)$ $d = 2$
· · · · · · · · · · · · · · · · · · ·
$a_n = a_1 + d(n-1)$
5+2(k-1)>200
5+2K-2>200
k > 98.5 : k=99

5 Functions f and g are defined by

$$f(x) = 4x - 2$$
, for $x \in \mathbb{R}$,

$$\mathrm{g}(x)=\frac{4}{x+1}\,,\quad \mathrm{for}\; x\in\mathbb{R},\; x\neq -1.$$

(a) Find the value of fg(7).

[1]

f(0.5) = 4(0.5) - 2 = 0

(b) Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.

[5

 $y = \frac{4}{x+1} \longrightarrow \frac{4}{y} - 1 = x \longrightarrow q^{-1}(x) = \frac{4}{x} - 1$

 $\frac{\chi + 2}{4} = \frac{4 - \chi}{\chi}$

 $\chi^2 + 2\chi = 16 - 4\chi$

$$\chi^2 + 6\chi - 16 = 0$$

7=2,-8

6	(a)	Prove the identity $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = \frac{1}{\tan x}$.	[4]
		$\left(\frac{1-\sin x}{\cos x}\right)\left(\frac{1}{\sin x}\right)$	
		$(1-\sin x)$ $(1+\sin x)$ $\sin x$	
		$\frac{1-\sin^2x}{\cos x\sin x} = \frac{\cos^2x}{\cos x\sin x} = \frac{\cos x}{\sin x}$	<u>l</u> anx
	(b)	Hence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2 \tan^2 x$ for $0^\circ \le x \le 180^\circ$.	[2]
		$\frac{1}{\tan x} = 2 \tan^2 x$	
		$4n^3\alpha = \frac{1}{3}$	

© UCLES 2020

9709/12/O/N/20

tanx = 0.7937 $x = 38.44^{\circ}$

© UCLES 2020 9709/12/O/N/20 **[Turn over**

In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.

(a)	Express the area of the shaded region in terms of r and θ . [3]
	$BX = y \sin \theta$ $AX = y \cos \theta$
	Area of triangle ABC = $2(\frac{1}{2} \times y \cos \theta \times y \sin \theta)$
	= r cos O sin O
	$A \text{ of sector } ABD = 1 r^2 Q$
	Shaded region = $r^2 \sin \theta \cos \theta - r^2 \theta$
	~

© UCLES 2020

$Arc BD = 10 \times 0.6 = 6$ ABC
$AC = \sqrt{10^2 + 10^2 - (2 \times 10 \times 10 \times \cos(\pi - 1.2))} = 16.51$
CD = 16.51 - 10 = 6.507 cm
Perimeter = 6.507 + 10+6 = 22.51
14/1144 = 0.301 + 10+6 = 2231

9709/12/O/N/20

[Turn over

© UCLES 2020

- **9** A circle has centre at the point B(5, 1). The point A(-1, -2) lies on the circle.
 - (a) Find the equation of the circle.

[3]

 $(x-h)^2 + (y-k)^2 = r^2$ where (h,k) is the centre of a circle $\xi_1 r$ is its radius $\xi_2 r$ Radius $\xi_3 r = \sqrt{(-2-1)^2 + (-t^2)^2} = 3\sqrt{\xi}$

 $E_{g}. \longrightarrow (\chi - 5)^{2} + (y - 1)^{2} = 45$

Point C is such that AC is a diameter of the circle. Point D has coordinates (5, 16).

(b) Show that DC is a tangent to the circle.

D 5-3 /5-

 $AB = BC = 3\sqrt{5}$ C(11, 4)Gradient of $AC \rightarrow 4+2 = 6 = 1$ 11+1 = 12 = 2

Gradient of CD $\rightarrow 4-16 = -12 = -2$

 $\frac{1}{2}X - 2 = -1 \text{ thus CD is perpendicular}$ to AC

© UCLES 2020

The other tangent from ${\cal D}$ to the circle touches the circle at ${\cal E}.$

(c)	Find the coordinates of E .	[2]
	DE -> 4 < 2x+6	
	$(\chi-5)^2+(2\chi+6-1)^2=45$	
	$(x-5)^{2}+(2x+6-1)^{2}=45$ $x^{2}-10x+25+4x^{2}+20x+25=45$	
	$5x^2 + 10x + 5 = 0$	
	$x^2 + 2x + 1 = 0$	
	E(-1,4)	
		•••
		•••
		•••
		•••

		•••
		•••

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and	$\int y \mathrm{d}x.$	[6]
-----	--	------------------------	-----

 $y = 2\left(3 - 2x\right)^{-2} - x$

 $\frac{dy}{dx} = -4(3-2x)^{-3} \times -2 - 1 = 8(3-2x)^{-3} -$

 $\frac{d^2y}{dz^2} = -24(3-2x)^{-4}x - 2 = 48(3-2x)^{-4}$

$\int 2(3-2x)^{-2} - x dx \rightarrow 2 \int$	(3-22)	-\ \	- Z
T I	-1	-2]	2

 $= \frac{1}{3-2x} - \frac{x^2}{2}$

© UCLES 2020

(b)	Find, by calculation, the x -coordinate of M .	[2]
	dy = 0	
	Tx	
	$\frac{8}{(3-2\pi)^3} - 1 = 0$ $8 = (3-2\pi)^3$ $2 = 3 - 2\pi \Rightarrow \pi = 1$	•••••
	(3-24)3	
	$Q = \begin{pmatrix} 2 & 2 & 2 \end{pmatrix}$	
	8 - (3-22)	
	$2 = 3 - 2\chi \longrightarrow \chi = \frac{1}{2}$	
(c)	Find the area of the shaded region bounded by the curve and the coordinate axe	s. [2]
	This the area of the shaded region bounded by the curve and the coordinate axe $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{vmatrix} 1 & -\lambda \\ 2 & 0 \end{vmatrix} = 3 - \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix}$	
	[3-2% 2] 6 8 3 24	
		•••••

9709/12/O/N/20

[Turn over

© UCLES 2020

11 A curve has equation $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.

(a) State the greatest and least values of y.

[2]

(b) Sketch the graph of $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.

[2]

(c) By considering the straight line y = kx, where k is a constant, state the number of solutions of the equation $3 \cos 2x + 2 = kx$ for $0 \le x \le \pi$ in each of the following cases. §

(i) k = -3

30052x+2=-3x

No solution

(ii) k = 1

 $3\cos 2x + 2 = 2$ 2 solutions

(iii) k = 3

 $3\cos 2x + 2 = 3x$ 1 solution

5 [1]

© UCLES 2020

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f(x) = 3\cos 2x + 2,$$

$$g(x) = f(2x) + 4,$$

$$h(x) = 2f(x + \frac{1}{2}\pi).$$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]
	$g(x) = f(2x) + 4 \leftarrow \text{moves 4 units up}$
	1 2 days of axis
	graph Shrinks by 2 along x-axis
	√
	Strech by factor of $\frac{1}{2}$ in α -direction Translation $\binom{0}{4}$
	Translation (0)
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]
(0)	h(x) = $2f(x + \underline{I})$
	$\Gamma(\lambda) = \lambda \Gamma(\lambda + \Gamma)$
	Streches 2 times moves II to the left
	along y-axis
	too be the last of bushing the state of the
	Stretch by a factor of 2 along y-axu
	Translation (1/2)
	Stretch by a factor of 2 along y-axis Translation (1/2)
	Translation (-1/2)
	Translation (-1/2)
	Translation ()

© UCLES 2020

Additional Page

must be clearly shown.		
© 1/C/ ES 2020	07/09/12/0/0/1/0	

BLANK PAGE

© UCLES 2020 9709/12/O/N/20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020