

Cambridge International Examinations Cambridge International Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

MATHEMATICS

Paper 3 Pure Mathematics 3 (P3)

9709/32 February/March 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 20 printed pages.

[Turn over

1	Use the	trapezium	rule with	three	intervals	to estimate	the value of

$$\int_0^{1/\pi} \sqrt{(1-\tan x)} \, \mathrm{d}x,$$

givir	ng your answe	er correct	to 3 dec	cimal plac	ces.						[3]
6	y dx	\longrightarrow	1h/	- 4 _. +	2/4	44 +	+ 4)	+ 4		
a J	J		2 L	المارة		1 72	\mathcal{I}	n-1/	J	^)	

Jhere are 3 intervals so
$$f_6 \rightarrow g_2$$

		-
1×II		- nyn
12	J_{0}	J -

	71 <u> </u>	- 1+21	0.8556	+ 0.65	() -	+0]	= 0.525	,
2	24	,				J		//
	•							

 	•••••	

coefficients.	1	2	_ 3	
(1-42) —	$\rightarrow -\chi -$	· 3x.	- Zx	
coefficients. $(1-4x)^{4}$		2	2	
		•••••	•	
	•••••	•••••		
	•••••			
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	•••••
		•••••	•••••	
	•••••	•••••		

9709/32/F/M/18

© UCLES 2018

Using the expansion	ns of $cos(3x + x)$ and $cos(3x - x)$, show that	
	$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$	[3]
cos(32+2	$ = \cos 3x \cos x - \sin 3x \sin x $ $ = \cos 3x \cos x + \sin 3x \sin x $	
<u>L</u> (co	S3x40SX-sin3x5inx+cos3xcosx	+ sin3
1 (5	(cos3x wsx) = ws3xcosx	
<i></i>		

		•••••
•••••		•••••
		•••••

3

(ii)	Hence show that $\int_{-1\pi}^{6\pi} \cos 3x \cos x dx = \frac{3}{8} \sqrt{3}.$	[3]
	Hence show that $\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x \cos x dx = \frac{3}{8}\sqrt{3}.$ $\boxed{1}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 ¹ / ₆
	Sin4x + sin2x -> (sin4x + 2sin)	22
	8 4 L 8	J-17 6
	$\sqrt{3}_{2} + \sqrt{3} - \left(-\sqrt{3}_{5} - \sqrt{3}\right) \rightarrow 3\sqrt{3}$	
	8 \ 8 / 8	•••
		••••
		•••

		•••
		•••
		•••

© UCLES 2018 9709/32/F/M/18 **[Turn over**

	graph of lny agai				[2]
y n =	$A\chi^3 \longrightarrow$	nlny=	lnAx3—	»nluy=ln	A+3lu
nlny =	ln A +3 lv is a liv = lnx -	nz is in	the form	of $y = mx$	L+ C
which	is a liv	rear egi	iation wh	rese V = l	ny
and X	= lnx -	thus its o	a Straigh	t line	
			J		
	•••••				
			•••••	•••••	•••••
4	of n and A , giving		rect to 2 decimal j	places.	[4]
nlny:	= 3 lnx +	t lnA			
nlny:	= 3 lnx + S8 = 3 ln	t lnA ·2 + lnA	so LuA	= nlu 2.58	-3lu1
nlny:	= 3 lnx +	t lnA ·2 + lnA	so LuA	= nlu 2.58	-3lu1
nlny: nln2.s nlu 9.4	= 3 lnx + S8 = 3 ln	+ lnA ·2 + lnA ·51 + lnA '	so luA so luA =	= nlu 2.58 nlu9.49-	-3lu1 3lu2
nlny: nln2.s nlu 9.4	= 3 lnx + S8 = 3 ln l 49 = 3 ln 2 n ln 2 S8 - 3	+ lnA ·2 + lnA ·51 + lnA ·3 ln1·2 = 1	50 lnA 50 lnA = 1ln9.49.	= nln 2.58 nln9.49- - 3 ln 2.5	-3lu1 3lu2
nlny: nln2.9 nlu9.4	= 3 lnx + S8 = 3 ln l 49 = 3 ln 2 n ln 2 S8 - 3	+ lnA ·2 + lnA ·51 + lnA ·51 + lnA ·51 + lnA ·51 - 3 l	50 lnA 50 lnA = 1ln9.49 . n1.2 = n	= nln 2.58 nln9.49- - 3 ln 2.5 ln 9.49-	-3lu1 3lu2 1 nlu2
nlny: nln2.s nlu 9.4	= 3 lnx + S8 = 3 ln l 49 = 3 ln 2 n ln 2 S8 - 3	+ lnA ·2 + lnA ·51 + lnA ·51 + lnA ·51 + lnA ·51 - 3 l	50 lnA 50 lnA = 1ln9.49 . n1.2 = n	= nln 2.58 nln9.49- - 3 ln 2.5	-3lu1 3lu2 1 nlu2
nlny: nln2: nln2:	= 3 lnx + S8 = 3 ln l 49 = 3 ln 2 n ln 2 S8 - 3	+ $\ln A$ $\cdot 2 + \ln A$ $\cdot 51 + \ln A$ $\cdot 51 + \ln A$ $\cdot 51 - 31$ $\cdot 2 \cdot 51 - 31$ $\cdot 3 \ln \left(\frac{2}{1}\right)$	50 lnA = 50 lnA = 1ln9.49 . n1.2 = n 51) = n	= nln 2.58 nln9.49- - 3 ln 2.5 ln 9.49-	-3lu1 3lu2 1 nlu2

9709/32/F/M/18

[Turn over

© UCLES 2018

_						
5	The	parametric	equations	of a	curve	are

$$x = 2t + \sin 2t$$
, $y = 1 - 2\cos 2t$,

for $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$.

(i)	Show	that	dy dx	=	2 tan <i>t</i> .
-----	------	------	----------	---	------------------

[5]

dy	. = dy	· dr
dr	dt	dt

$$\frac{dx}{dt} = 2 + 2\cos 2t$$

dy	= - 2	2 (-siv	12Ex2)
dt			

 						2
 dy	=	4sin2t	=	8 sint cost	=	8sint
 dr		2+20052t		2+2(2cos2 t-1)	/	4cos 1
 						20 inL

	WSL
=	

© UCLES 2018

(ii) Hence find the <i>x</i> -coordinate of the point on the curve at which the gradient of the normal is 2. Give your answer correct to 3 significant figures. [2]
Gradient of normal = -1/a adjust of aurus
Gradient of normal = -1/gradient of curve
Gradient of curve = -1 at x-coordinale
2
Cooling of a curile it du (a)
Gradient of a curve is its dy (2tanx)
de
2 + anx = -1
2
-1 1 -1 (1)
$\chi = fan^{-1}(-1)$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$x = 2 \cdot 90$

Quick Notes Page 9

6 The variables x and θ satisfy the differential equation

$$x\cos^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$

for $0 \le \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 1 when $\theta = \frac{1}{4}\pi$.

(i) Show that $\frac{d}{d\theta}(\tan^2 \theta) = \frac{2 \tan \theta}{\cos^2 \theta}$.

do

 $= 2 \tan \theta$ $\cos^2 \theta$

[1]

(ii) Solve the differential equation and calculate the value of x when $\theta = \frac{1}{3}\pi$, giving your answer correct to 3 significant figures. [7]

 $\int x \, dx = \int \frac{2 \tan \theta + 1}{\cos^2 \theta}$

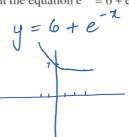
 $\frac{x^2 = \int 2 \tan \theta + 1}{2} \cos^2 \theta \cos^2 \theta$

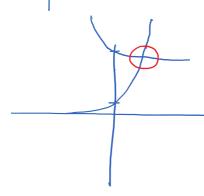
 $\frac{\chi^2}{2} = 2 \int \tan \theta \sec^2 \theta + \int \sec^2 \theta$

 $\chi^2 = (\tan \theta + \tan \theta + c)$

 $\frac{1^2 = 6an^2\pi + 6an\pi + C}{2} = 6an^2\pi + 6an\pi + C$ So C = -3

 $\frac{\chi^2 = \tan^2 \theta + \tan \theta - 3}{2}$


© UCLES 2018


	When $0 = \overline{11}$, $x = 2.54$

© UCLES 2018 9709/32/F/M/18 **[Turn over**

7 (i) By sketching suitable graphs, show that the equation $e^{2x} = 6 + e^{-x}$ has exactly one real root. [2]

(ii) Verify by calculation that this root lies between 0.5 and 1.

$\Gamma 21$
4

		2-2		0	
	=	e .	<u> </u>	0 -	-е
U					

When	X = 0	.5,	4 =	-3.	888

VO DI DIC	/ - 0	3/4=	-0.800
			1.0212

One is	-ve &	, the of	her is	+ve	Proves

that root lies between n=0.5 & n=1

© UCLES 2018

(iii)	Show the	at if a	sequence	of values	given b	v the it	erative f	ormula
(111)	Show the	at 11 a	sequence	or values	given b	v the it	eranive i	ormuia

$$x_{n+1} = \frac{1}{3} \ln(1 + 6e^{x_n})$$

converges, then it converges to the root of the equation in part (i). [2]

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

 $x_{n+1} = \ln(6e^{x_n}+1)$ $x_1 = 1.021177$ $\chi_{1+1} = \frac{\ln (6e^{2} + 1)}{3} + \chi_{2} = 0.95708$

 $\chi_{2+1} = \ln\left(6e^{x_2}+1\right) \longrightarrow \chi_3 = 0.93696$

 $\chi_{3+1} = \underbrace{\ln\left(6e^{x_3}+1\right)} \longrightarrow \chi_{4} = 0.93066$ $\chi_{4+1} = \underbrace{\ln\left(6e^{x_4}+1\right)}_{3} \longrightarrow \chi_{5} = 0.92869$

 $x_{S+1} = \frac{\ln(6e^{x_{S+1}})}{3} \rightarrow x_{6} = 0.928.07$ $x_{7} = 0.92788$ $x_{8} = 0.92782$

· x = 0.928

9709/32/F/M/18 [Turn over © UCLES 2018

	14	
0	Let $f(x) = \frac{5x^2 + x + 27}{(2x+1)(x^2+9)}$ Ats numerator will be having x	
ð	Let $f(x) = (2x+1)(x^2+9)$	
	(i) Express $f(x)$ in partial fractions.	[5]
	$A + Bx + C = 5x^2 + x + 27$	
	$2x+1$ x^2+9	
	$A(x^2+9)+(Bx+C)(2x+1) = 5x^2+x+27$	•••••
	Lets compare coefficients of x	•••••
	$A + 2B = 5 \longrightarrow A = 5 - 2B \longrightarrow 0$	
	Lets compare coefficients of re	
	$B + 2C = 1 \rightarrow 2$	
	Lets compase constemts	••••••
	9A+C=27→3	•••••
	(1) into (3)	
	$9(5-2B) + C = 27 \rightarrow 18B - C = 18$	$\rightarrow \mathscr{G}$
	$(\hat{2}) = (4)$	••••••
	$1-B = 18B-18 \rightarrow 1-B = 36B-36$	•••••
	$B = 1$, $C = 0$ ξ A	= 3
		•••••
		•••••
		•••••
		•••••
		•••••

J ()	f(x) dx, giving your answer in			[5]
	(3)	x dx		
	0 / (2x+1,1)	2+9;		
	2	Suppose	u=x2+9 H	ren
	3 ln(2x+1)	$\frac{du}{dx} = 2$	27 8 70	2
	2	dx.		
		x dx		× du
		$\chi^2 + $	9 Ju	2
		1 1	<u> </u>	0011
		$\frac{1}{2}$	$u = \frac{1}{2}$	2 27600
			=]	$-ln(x^2+$
4				
	30. (2-1)) , 0, (, 2		
	2 (1/2/41)	$+\frac{1}{2}\ln(x^2)$	+ +)	
	<i>L</i>		J	
	(ln 27+ln:	57-[ln3]	= lu27+	ln (5/2)
	L			
•••••		•••••	- 04/27	(6) -0
			= lu (27)	3
•••••				
•••••			••••••	••••••

(i)	It is given that	t u is a root of t	the equation $2x^3$	$-x^2 + 4x + k = 0$,	where k is a constant.
-----	------------------	--------------------	---------------------	-----------------------	--------------------------

(a)	Showing all working and without using a calculator, find the value of k . [3]
	$2(1+2i)^{3}-(1+2i)^{2}+4(1+2i)+k=0$
	2(-11-2i)-(4i-3)+4+8i+k=0
	$2(1+2i)^{3}-(1+2i)^{2}+4(1+2i)+k=0$ $2(-11-2i)-(4i-3)+4+8i+k=0$ $-22-4i-4i+3+4+8i+k=0$ $k=15$
	k=15
(b)	Showing all working and without using a calculator, find the other two roots of this equation. [4]
	Conjugate of u is also one of the roots so

Conjugate of u u also one of the roots so

1+2i, 1-2i & x Now following is the

method you can follow to find the 3 root

Sum of the roots: 1+2i+(1-2i) = 2

Product of the roots: (1+2i)(1-2i) = 1-4i^2 = 5

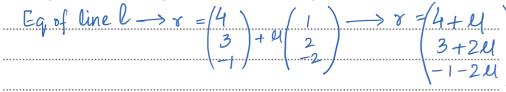
Quadratic factor of the equation constituting

these two roots is:

 z^2 -(samof roots) + (product of roots) z^2 -2z + S it means 1+2i \lesssim 1-2i were roots from z^2 -2z+S

© UCLES 2018

For 3rd root, divide 2x3-2+4x+15 = 0 by x-2x+5
2x+3
$x^{2}-2x+5$ $2x^{3}-x^{2}+4x+15$
$-(2x^3-4x^2+10x)$
3x2-6x+15
$-(3\chi^2-6\chi+15)$
D
So the 3 rd root is $2x+3=0 \longrightarrow -3$
(ii) On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $ z - u = 1$. Determine the least value of arg z for points on this locus. Give your answer in radians correct to 2 decimal places. [4]
z-(1+2i)=1 eircle with centre (1,2) = 1 least value of any z is tangent from origin to the circle's circumference that makes smallest possible angle
that makes smallest possible angle
radius 1 mit radius 1 mit real Ex. 102 0, < 02
2 (4)
26.565 26.565
Shaded past = 90° - (2×26.565°) = 36.87° = 0.64


9709/32/F/M/18

[Turn over

© UCLES 2018

- 10 The line *l* has equation $\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} \mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} 2\mathbf{k})$. The plane *p* has equation 2x 3y z = 4.
 - (i) Find the position vector of the point of intersection of l and p.

[3]

(x)	 (4+e1)	
9	3+24	$) \rightarrow \mathbb{C}$
(~)	 1-24 /	·····

Plane
$$p \rightarrow 2x - 3y - z = 4 \rightarrow 2$$

Put (1) into (2)

$$2(4+4) - 3(3+24) - (-1-24) = 4$$

$$8+24-9-64+1+24=4 \text{ so } 4=-2$$
Put $4=-2$ into l's equation $4-2=2$

$$3+2(2)=3+2(2)$$

(ii) Find the acute angle between l and p.

[3]

Normal of plane
$$p \longrightarrow \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Direction vector of line
$$l \longrightarrow \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} \circ \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \sqrt{2 + (-3)^{2} + (-1)^{2}} \sqrt{1 + 2 + (-2)^{2}} \cos 0$$

0 = 10.3	

.....

© UCLES 2018

(iii) A second plane q is parallel to l , perpendicular to p and contains the point with position vector $4\mathbf{j} - \mathbf{k}$. Find the equation of q , giving your answer in the form $ax + by + cz = d$. [5]	
Plane q, contains $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $\begin{cases} 7 \\ -1 \end{cases}$ = 4 is perpendicular t	.0
Vector product of l's direction vector g plane p's normal vector	
El plane p's normal vector	
lijk	
$\begin{vmatrix} 2 - 3 - 1 \\ 1 & 2 - 2 \end{vmatrix} = (6 - (3)^{2} - (4 - (4))^{2} + (4 - (-3))^{2} k$	
Plane $q \rightarrow r \cdot \begin{pmatrix} 8 \\ 3 \end{pmatrix} = D$ Plane $q \mapsto r \cdot \begin{pmatrix} 8 \\ 3 \end{pmatrix} = D$	
Plane $q \rightarrow \tau$. $(\frac{3}{7}) = D$ Plane q contains $D = (\frac{3}{7}) \cdot (\frac{4}{7}) = 5$ thus q is the plane q contains	
Plane $q \rightarrow 8x + 3y + 7z = 5$	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018