Quick Notes Page 1

Cambridge International AS & A Level

CANDIDATE NAME

CENTRE NUMBER CANDIDATE NUMBER

*

MATHEMATICS

Paper 3 Pure Mathematics 3

9709/33

May/June 2020 1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. .
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided. ٠
- Do not use an erasable pen or correction fluid. ٠
- Do not write on any bar codes. ٠
- If additional space is needed, you should use the lined page at the end of this booklet; the question ٠ number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

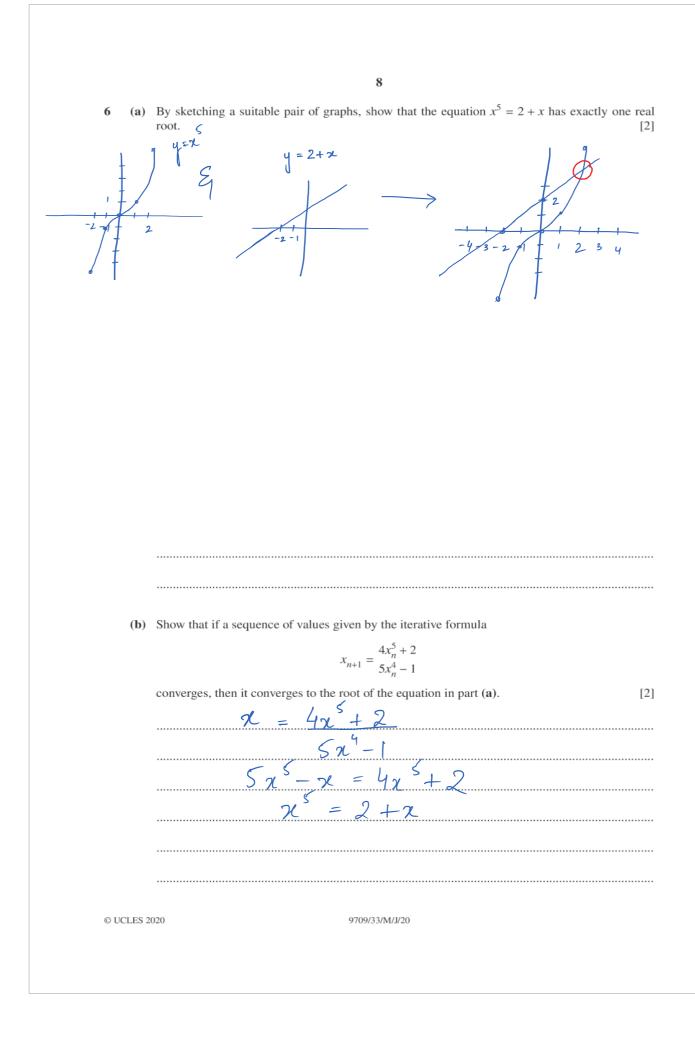
JC20 06_9709_33/RP © UCLES 2020

[Turn over

1	Solve the inequality $ 2x - 1 > 3 x + 2 $.	
	$\left(2n-1\right)^{2}$ $\left(3(n+2)\right)^{2}$	
	$4x^{2} - 4x + 1 > 9(x^{2} + 4)$ $4x^{2} - 4x + 1 > 9x^{2} + 36$	x. +. 9.)
	$4\chi - 4\chi + 1 > 4\chi + 36$	X + 36
	$5\chi^2 + 40\chi + 35$	
	$\chi^2 + 8\chi + 7 <$	
	$\chi = -1 - 7$	
	$-7 < \chi < -1$	
© UC	PLES 2020 9709/33/M/J/20	

Find the exact value of $\int_0^1 (2-x)e^{-2x} dx$. 2 [5] -2x 22 XC ٥ \ D 22 vide them 2 dr -2x 21 e U So du đ U V =(F đ dr Q -2x -21 -ZX -Xl -22 e e. l.....*l*. 2 L 2 2 Х -2x -2% -2x -2x XP P e Ž 2 -2 2 4 -27L -22 -21 22 re υ 2 D -21 -22 - 3 <u>_</u> e 0 4 ·····0 - -2 -2 2 - 3e = 3 3 e -e 4 2 4 4 [Turn over © UCLES 2020 9709/33/M/J/20

3	(a)	Show	that	the	equation
---	-----	------	------	-----	----------


	$\ln(1 + e^{-x}) + 2x = 0$
с	can be expressed as a quadratic equation in e^x . [2]
	$ln(1+e^{-\chi}) = -2\chi$
	$ln(1+e^{-x}) = -2x$ $1+e^{-x} = e^{-2x}$
	$e^{-2x} - e^{-x} - 1 = 0$
	Suppoper $M = e^{-\chi}$
	Suppose $u = e^{-\chi}$ $v^2 - v - 1 = 0$
	0 - 0 - 1 - 0
(b) F	Hence solve the equation $\ln(1 + e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal places. [4] $U^2 + U - I = O$ $U = -I \pm \sqrt{5}$
	2
	$e^{-\chi} = -1 + \sqrt{5} \xi e^{-\chi} = -1 - \sqrt{5}$
	2 7
	$-z\ln e = \ln\left(-\frac{1+\sqrt{5}}{5}\right)$
	x = -0.481
© UCLES 2020	0 9709/33/M/J/20

5 The equation of a curve is $y = x \tan^{-1}(\frac{1}{2}x)$. $\chi \xi_1 \tan^{-1}(\frac{\chi}{2})$ 4 (a) Find $\frac{dy}{dx}$. [3] $u = \chi \quad \xi \quad v = \tan^{-1}\left(\frac{\chi}{2}\right) \qquad \text{Differentiation of} \\ \frac{du}{d\chi} = \left[\begin{array}{c} \xi & dv = -\frac{\chi}{2} \\ \frac{dv}{d\chi} & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{du}{d\chi} = \left[\begin{array}{c} \xi & dv = -\frac{\chi}{2} \\ \frac{dv}{d\chi} & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{d\chi} = \left[\begin{array}{c} \xi & dv = -\frac{\chi}{2} \\ \frac{dv}{d\chi} & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{d\chi} = \left[\begin{array}{c} \xi & dv = -\frac{\chi}{2} \\ \frac{dv}{d\chi} & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{d\chi} = \left[\begin{array}{c} \xi & dv = -\frac{\chi}{2} \\ \frac{dv}{d\chi} & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{d\chi} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{d\chi} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \text{Total of } \\ \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \\ \frac{dv}{4+\chi^2} \end{array} \right] \qquad \frac{dv}{4+\chi^2} = \left[\begin{array}{c} \xi & \frac{dv}{4+\chi^2} \end{array} \right]$ $\frac{dy}{dx} = \frac{u \, dv}{dx} + \frac{v \, du}{dx}$ $= \chi \left(\frac{2}{U+2^{2}} \right) + \tan^{-1} \left(\frac{\chi}{2} \right)$ $= 2 \times + \tan^{-1}\left(\frac{\pi}{2}\right)$ To cancel $1 + \frac{\pi^2}{4}$ π^2 fraction $\frac{1}{4}$ $4 + \pi^2$ To cancel $1 + \frac{\pi^2}{4}$ π^2 fraction $\frac{1}{4}$ $4 + \pi^2$ $4 + \pi^2$ 2 4+22 (b) The tangent to the curve at the point where x = 2 meets the y-axis at the point with coordinates (0, p).Find p. Equation of tangent to curve at $n = 2 \rightarrow ?$ Gradient of curve at n = 2 is equal to gradient of tangent. For Gradient of curve at x=2, use dy & substitute 2 Gradient of curve $\longrightarrow \frac{2}{2} + \tan^{-1}\left(\frac{2}{2}\right) = \frac{11}{4} + \frac{1}{2} = \frac{11+2}{4}$ hence p=-1 [Turn over 9709/33/M/J/20 © UCLES 2020

By first expressing the equation

$\tan\theta\tan(\theta+45^\circ)=2\cot2\theta$		
as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.		[6]
tan (A+B) = tan A + tan B cr I-tan A tan B	0E20 = 1	Ey tam20=2tam0
I-tan Atan B	tan 26	
$\frac{\tan O\left(\tan O + \tan 45\right)}{1 - \tan 45 \tan 9} = 2 - 2\tan^2 0$	iot20 = 1-ta	<u>n²0</u>
1-tan 4stand 2 tan Q	z ta	и <i>0</i>
$\tan^2 \Theta + \tan \Theta = 1 - \tan^2 \Theta$		
I-tand tand		
tand (tan0+1) = (1+tan0)(1-	LanO)	
1-EanO 2 EanO		
tanO = (1 - tanO)	<u>.</u>	
$Ean O = 1 \longrightarrow O = 26$	6	
2		
9709/33/M/J/20		

		7	
@ UC	LES 2020	9709/33/M/J/20	[Turn ove
0.00		> 1 5 7 1 5 7 1 5 1 5 1 5 1 5 5 5 5 5 5 5	[

	9
(c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimplaces. Give the result of each iteration to 5 decimal places.
	$x_2 = 1.33/62$ $x_1 = 1.27352$
	$\chi_{2} = 1.33/62$ $\chi_{3} = 1.27352$ $\chi_{4} = 1.26724$ $\chi_{4} = 1.26717$ $\chi_{6} = 1.26717$
	$\chi_{2} = 1.33/62$ $\chi_{3} = 1.27352$ $\chi_{4} = 1.26724$ $\chi_{4} = 1.26717$ $\chi_{6} = 1.26717$
	$\begin{array}{rcl} \chi_{2} &=& 1.33/62 \\ \chi_{3} &=& 1.27352 \\ \chi_{4} &=& 1.26724 \\ \chi_{4} &=& 1.26717 \\ \chi_{6} &=& 1.26717 \\ \chi_{6} &=& 1.26717 \end{array}$

7 Let
$$f(x) = \frac{2}{(2x-1)(2x+1)}$$
.
(a) Express $f(x)$ in partial fractions.

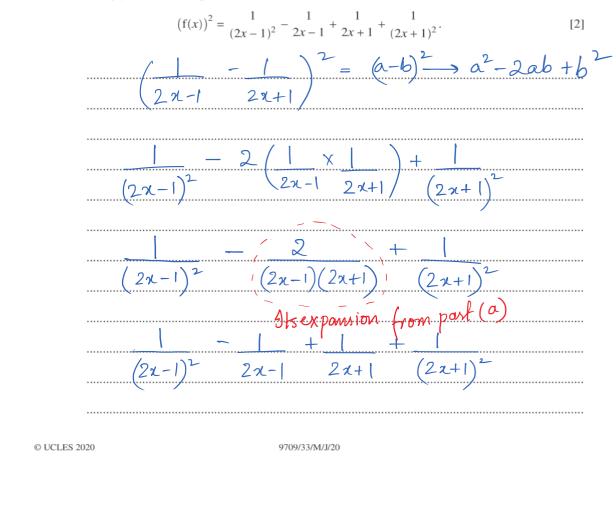
$$A + B = 2$$

$$2x - 1 \quad 2x + 1$$

$$A (2x + 1) + B(2x - 1) = 2$$

$$2Ax + A + 2Bx - B = 2$$

$$A - B = 2 \quad \text{so} \quad A = 2 + B$$


$$2A + 2B = 0 \quad \text{so} \quad 2(2+B) + 2B = 0$$

$$4 + 4B = 0 \quad \text{so} \quad B = -1 \quad \text{so} \quad A = 1$$

$$1 - 1$$

$$2x - 1 \quad 2x + 1$$

(b) Using your answer to part (a), show that

10

	11	
(c) Her	there show that $\int_{1}^{2} (f(x))^2 dx = \frac{2}{5} + \frac{1}{2} \ln(\frac{5}{9}).$	[5]
	$2\left(\frac{2\chi-1}{2}-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)^{-2}$	
	$\int 2x-1 2x+1$	
	$2\left(\frac{(2\alpha-1)^{-1}\times1^{-1}-1\ln((2\alpha-1)^{+1})+(2\alpha+1)^{+1}+(2\alpha+1)^{+1}\right)$	(+1)
	$-1^{\prime}22^{\prime}2^{\prime}2^{\prime}$	1
	$\begin{bmatrix} -1 & -1 \ln (2x-1) + 1 \ln (2x+1) - \\ 2(2x-1) & 2 & 2 \end{bmatrix}$	1
	(2(2x-1)) 2 2 2	(21
	2 - 1 - 1 - 1 - 1 - 2x + 1	
	$\left[\frac{1}{2(2\chi - 1)} - \frac{1}{2(2\chi + 1)} + \frac{1}{2} \left[\frac{1}{2\chi - 1} \right] \right]$	
		••••
	$ \left[\begin{array}{c} -4 + 1 \ln \left(5 \right) \\ 15 2 \end{array} \right] - \left[\begin{array}{c} -2 + 1 \ln \left(3 \right) \\ 3 2 \end{array} \right] $	
	$\frac{2}{2} + \frac{1}{\ln(5)}$	
	5 2 9/	
		•••••
	9709/33/M/J/20 [Turr	

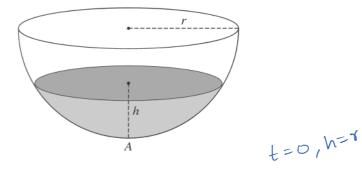
8 Relative to the origin O, the points A, B and D have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}$.

A fourth point C is such that ABCD is a parallelogram.

(a) Find the	position vector of C and verify that the parallelogram is not a rhombus. [5]
Ą.B	$= \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$
A D	$= \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$
	is parallel to AD so $BC = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$
	$= \overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BC}$
	$= (1) + DA + AB + BC$ $= \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix} = 4i + 3j + 4k$
RI	
9 	tombus will have its diagonals intersectings E 90° but parallelogram won't
	$BD \cdot AC \neq O$
	$\begin{pmatrix} 1 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = 3 - 5 - 3 = -5$
	· - [/ · · 5 /
-ES 2020	9709/33/M/J/20

	13	
(b) Fin	ad angle BAD , giving your answer in degrees.	[3]
	T T	
	DB	
	$\overrightarrow{BA} = \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} \overleftarrow{\xi} \overrightarrow{DA} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$	
ωsθ	$ \sqrt{(-1)^{2} + (-2)^{2} + (-2)^{2} \times \sqrt{(-2)^{2} + (2)^{2} + (-1)^{2}} \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix}} \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} $	
	$\theta = 100.3$	
(c) Fin	ad the area of the parallelogram correct to 3 significant figures. $\begin{bmatrix} A & B & B & D \end{bmatrix} \times \begin{bmatrix} A & B & D \end{bmatrix} \times \begin{bmatrix} A & B & B & D \end{bmatrix} = \begin{bmatrix} A & B & B & D \end{bmatrix} = \begin{bmatrix} A & B & B & D \end{bmatrix} = \begin{bmatrix} A & B & B & B \end{bmatrix} = \begin{bmatrix} A & B & B & B \end{bmatrix}$	[2]
	[A of triang [e BAD] × 2 [1 x length of AB × length of AD × sin BAD 2]x 2
	Length of AB = $\sqrt{(1)^2 + (3)^2 + (2)^2} = \sqrt{14}$ Length of AD = $\sqrt{(2)^2 + (-2)^2 + (1)^2} = 3$	
	$\begin{bmatrix} 1 \times \sqrt{14} \times 3 \times \sin(100.3) \end{bmatrix} \times 2 = 11.02$	
© UCLES 2020	9709/33/M/J/20	[Turn over


9 (a) The complex numbers *u* and *w* are such that

$$u - w = 2i$$
 and $uw = 6$.

Find u and w, giving your answers in the form x + iy, where x and y are real and exact. [5]

$\mathcal{U} = 2i + \omega$
(2i+w)w = 6
$2iw + w^2 = 6$
$\omega^2 + 2i\omega - 6 = 0$
$\omega = -b \pm b^2 - 4ac$
20
$\mu_{2} = -2i \pm (2i)^{2} - 4(1)(-6) = -7i \pm 20$
2(1)
$\omega = -1 + \sqrt{5} \text{or} -1 - \sqrt{5}$
$\mathcal{U} = \mathbf{i} + \sqrt{5} \text{or} \mathbf{i} - \sqrt{5}$
© UCLES 2020 9709/33/M/J/20

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers zarea within civcle satisfying the inequalities area within circle thats less than real value of 3 0° to 45° from docurise origin & antidoclarise Re $z \leq 3$. $|z-2-2i| \le 2$, $0 \le \arg z \le \frac{1}{4}\pi$ and Z-(2+2i) Imaginary Ave de cente Hodius 8 4 2 \rightarrow real b 4 2 s within 2 or is so to the volues has than 3. We wan vcu [Turn over © UCLES 2020 9709/33/M/J/20

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is	A and
the radius is r, as shown in the diagram. The depth of water at time t is h. At time $t = 0$ the	tank is
full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow	out at
a rate proportional to \sqrt{h} . The tank becomes empty at time $t = 14$. At $t = 14$, $V = 6$	dV x-Jh

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

 $\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^2 - h^2},$

(a)	volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$. Show that h and t satisfy a differential equation of the form $\frac{dh}{dt} = -\frac{B}{2rh^2 - h^3},$ where B is a positive constant, $V = TTYh - TTh$ $S = 0$ $V = -Kh^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^2 - h^2}, \qquad \qquad$
	where B is a positive constant. [4]
	$V = 717h - 7h = 2 dV = -kh^2$
	3 dt
	$dV = 2\pi rh - \pi h^2$ $dh = dV = dV$
	dh dt at dh
	$= -\frac{1}{2}$
	$\sim -1 - 1^{2}$
	$2\pi rh - \pi h^2$
	$=-\frac{1}{2}hk$
	Fr (271 8 Jh - TT h 2)
	dh = -k
	$\frac{1}{2}$
	ac Lin - In-
	B = k
	π
CLES 20	9709/33/M/J/20

 $\frac{dt}{dt} = \frac{1}{2} \frac{dt}{dt} = h^{\frac{1}{2}}$
 Separate hand t
 $\int 2xh^{\frac{1}{2}} - h^{\frac{3}{2}} dh = - \left(B dt \right)$
 $\frac{1}{2} \int rh^2 - \int h^2 dh = -BE + C$
 $2\left[\frac{2\gamma h^{\frac{3}{2}}}{3}\right] - \left[\frac{2h^{\frac{5}{2}}}{3}\right] = -BE + C$
 $\frac{4rh^{\frac{3}{2}} - 2h^{\frac{5}{2}} = -Bt + C}{3}$
 When $t = 0$, $h = r \in E$, $t = 14$, $h = 0$
 When $t = 0$, $C = 14 \sqrt{\frac{5}{2}} = \frac{5}{\sqrt{2}}$
 15 15 3 5
 $E = \frac{42\gamma^{2}}{60rh^{2}} + \frac{18h^{2}}{5}$
 $3r^{2}$ $f = 14 - 20(h)^{2} + ((h)^{2})$
 r r r

Additional Page If you use the following lined page to complete the answer(s) to any question(s), the question num must be clearly shown.		
© UCLES 2020	9709/33/M/J/20	

BLANK PAGE

© UCLES 2020

9709/33/M/J/20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020

9709/33/M/J/20