Cambridge International AS \& A Level

CHEMISTRY	$9701 / 12$
Paper 1 Multiple Choice	May/June 2020
	1 hour

You must answer on the multiple choice answer sheet.
You will need: Multiple choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended
Data booklet

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the
spaces provided unless this has been done for you
- Do not use correction fluid.
- Do not write on any bar codes
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer
- Any rough working should be done on this question paper.
have used following colour codes:
- Blue colour used for facts or reasoning
ed colour used for steps part of calculations along with its explanation
- Black colour used for right answer choice

This document has 16 pages. Blank pages are indicated.

1B20 06_9701_12/3RP
© UCLES 2020
[Turn over

2
Section A
For each question there are four possible answers $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}. Choose the one you consider to be correct.

Use of the Data Booklet may be appropriate for some questions

1 In which carbon allotrope are all electrons localised?
A buckminsterfullerene This is something which you
(B) diamond are supposed to tuow thbt

C graphite \quad is the only one which has no delocalised electrous ε thus does $\frac{3}{100} \times$ copperare $=123.55^{102}$
D graphene not conduct elec tricily thus aces ${ }_{100}^{100}$ coper mass ore $=4118.3$
nas $\mathrm{CuCO}_{3}+$ alot others
2 A copper ore contains 3.00% of copper carbonate, CuCQ_{3}, by mass.
Which mass of copper would be obtained from 1 tonne of the ore? $\quad 123.55 \quad \mathrm{CuCO}_{3}$ tonne of the ore has $30,000 \mathrm{~g}$ of

3 The catalysed formation of ammonia by the Haber process can be represented by the equation shown.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which change in conditions will increase both the rate of formation and the equilibrium yield of
ammonia? his will decrease the rate
A. decrease in the temperature his will increase the rate but decrease the yield B increase in the temperature $\longrightarrow \begin{aligned} & \text { increase in the pressure }\end{aligned} \begin{aligned} & \text { bc2 the reaction side which decreases } \\ & \text { be favoured } \xi \text { that is backward reaction }\end{aligned}$
(C)
C
D. increase in the surface area of the catalys
rea of the catalyst
\rightarrow nota factor to increase equilibvium yield
besider we should increase the surfac
4 Solid sulfur consists of S_{8} molecules.area of reactants to increase the rate NOT catalysts
Which equation represents the standard enthalpy of atomisation of sulfur?
(A) $\frac{1}{8} \mathrm{~s}_{8}(\mathrm{~s}) \rightarrow \mathrm{S}(\mathrm{g}) \quad$ energy to convest an element in its standard

B $\frac{1}{8} \mathrm{~S}_{8}(\mathrm{~g}) \rightarrow \mathrm{S}(\mathrm{g}) \longleftarrow$ sulfur exists as a solid consisting of S_{8} molecul
C $\mathrm{S}_{8}(\mathrm{~s}) \rightarrow 8 \mathrm{~S}(\mathrm{~g})$

```
(A) \(\frac{1}{8} \mathrm{~S}_{8}(\mathrm{~s}) \rightarrow \mathrm{S}(\mathrm{g})\) energy to convest an element in its standard
B \(\frac{1}{8} \mathrm{~S}_{8}(\mathrm{~g}) \rightarrow \mathrm{S}(\mathrm{g}) \longleftarrow\) sulfur exists as a solid consisting of \(\mathrm{S}_{8}\) molecul
C \(\mathrm{S}_{8}(\mathrm{~s}) \rightarrow 8 \mathrm{~S}(\mathrm{~g})\)
D \(\underset{\sim}{\mathrm{S}(\mathrm{g})} \rightarrow 8 \mathrm{~S}(\mathrm{~g})\) sulfur doesut
exist as a dond exist as a stondor
QUCLES 2020
9701/12MMJ/20
```

5 In this question you should use changes in oxidation numbers to balance a chemical equation.
The following reaction occurs when -2×3 MnO is warmed with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. In thes kind of Q_{8}, you ought

What is the ratio of $c: d$ in the correctly balanced equation?
Wrile the difierncesin oxid dation
nos of Mn on both sides of
A $1: 1$ B $1: 2$
reachon
Next ty ou must multiply both
2 and 3 with some hax mber

$\begin{array}{llll}100 & =309.5 \mathrm{~cm}^{3} & \text { Whas, under room conditions? } \\ & \sim 310 \mathrm{~cm}^{3} & \text { A } 14 \mathrm{~cm}^{3} & \text { B } 27 \mathrm{~cm}^{3}\end{array}$ C $65 \mathrm{~cm}^{3} \quad$ (D) $310 \mathrm{~cm}^{3} \quad 10 \mathrm{~cm}^{3}$ of butane $\begin{aligned} & 1 / 2400 \mathrm{moles}\end{aligned}$
$\mathrm{C}_{4}{ }^{H 10+\frac{13}{2} \mathrm{O}_{2}} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

What is the most likely explanation for this observation?
or tosay $65 \mathrm{~cm}^{3}$ of
O_{2}
A Bromine is reduced to bromide ions in the bottom layer.
(B) Bromine molecules are non-polar.

C Bromine reacts with water but cannot react with cyclohexane.
D The product of the reaction between bromine and cyclohexane is coloured.

8 In which change are only temporary dipole-induced dipole forces overcome?
A $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$ This has hydregen bonding present
B $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ This has hydrogen bonding too present
(C) $\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{O}_{2}(\mathrm{l})$

D $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~s})$ This is contraction so no forces are overcome
9 The complete combustion of 2 moles of an alkane produces $400 \mathrm{dm}^{3}$ of carbon dioxide measured
at 301 K and $1 \times 10^{5} \mathrm{~Pa}$. Carbon dioxide can be assumed to behave as an ideal gas under these
conditions.
What is the formula of the alkane?

$$
\begin{aligned}
& \text { (A) } \mathrm{C}_{8} \mathrm{H}_{18} \quad \text { B } \mathrm{C}_{16} \mathrm{H}_{34} \quad \text { C } \mathrm{C}_{20} \mathrm{H}_{42} \quad \text { D } \mathrm{C}_{40} \mathrm{H}_{82} \\
& \text { moles of } \mathrm{CO}_{2}=\frac{P \times V}{R \times T}=\frac{10^{5} \times 0.4}{8.314 \times 301}=16 \\
& \begin{array}{ccc}
\text { To balance no. of carbon a toms, we should } & \text { 2allane }+\mathrm{O}_{2} \longrightarrow \\
\text { have } 16 \text { on the left toD. }
\end{array} \begin{array}{l}
16 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
400 \mathrm{H}^{3} \rightarrow 0.4 \mathrm{~m}^{3} \\
301 \mathrm{~K}
\end{array} \\
& \text { have } 16 \text { on the left tod. } \\
& \xrightarrow{301 \mathrm{~K}} \underset{10^{5} \mathrm{~Pa}}{400 \mathrm{~Pa}}
\end{aligned}
$$

10 In which reaction does an element undergo the largest change in oxidation number?

(B) $3 \mathrm{Cl}_{2}+6 \mathrm{COH}^{-2+1} \rightarrow{ }^{++\mathrm{C}^{-2}} \mathrm{ClO}_{3}^{-}+\mathrm{C}^{-1} \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{H}_{2}^{-2}$

D ${ }_{3}^{+6} \mathrm{MnO}_{4}^{-2}{ }^{2-}+\stackrel{+1}{4 \mathrm{H}^{+}} \rightarrow \stackrel{+4}{\mathrm{MnnO}_{2}^{-2}}+\stackrel{+6-2}{2} \mathrm{MnO}_{4}^{-}+\stackrel{+1}{2} \mathrm{H}_{2}^{-2} \mathrm{O}^{-2}$
$11 \mathrm{PCl}_{5}$ decomposes as shown.
moles bf equlibrium $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\frac{1.0 \mathrm{~mol} \text { of } \mathrm{PCl}_{5}(\mathrm{~g}), 1.0 \mathrm{~mol} \text { of } \mathrm{PCl}_{3}(\mathrm{~g}) \text { and } 1.0 \mathrm{~mol}}{1 \mathrm{dm}^{3} \text { at } 250^{\circ} \mathrm{C} \text { and allowed to reach equilibrium. }} \mathrm{Cl}_{2}(\mathrm{~g})$ are placed in a container of volume
At this temperature, the equilibrium mixture contains 1.8 moles of PCl_{3}.
What is the value of K_{c} at $250^{\circ} \mathrm{C}$?

A 1	B 1.8	C 9	D) 16.2

12 The fifth to eighth ionisation energies of four elements in Period 3 of the Periodic Table are
shown. This is after 4 electrons

$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$			
111			
crame	$-0.8+0.8+0.8$		
respant	$\begin{array}{llll}0.2 & 1.8 & 1.8\end{array}$		
there ic an increase of 0.8 moles to PCl_{3} \& mole ratio of PC_{3} to Cl_{2} is $1: 1$ thus there should be 0.8 moles of			
increase in Cl_{2} too. Since			
PCl_{3} is $1: 1$ and PCl_{5} converts to PCl_{3} and Cl_{2} there should be a decrease of 0.8 moles in PCl_{5}			

Which row refers to chlorine?

	ionisation energies/kJ mol $^{-1}$			
	fifth	sixth	seventh	eighth
A	6280	21200	25900	30500
B	6990	8490	27100	31700
C	6540	9330	11000	33600
D	7240	8790	12000	13800

3 outermostelectrons in Cl here should
have similar ionisation evergies and
the $8^{\text {th }}$ electron being remaved is
from shell nearer to nucleus so i.e should be very
nigh

13 Magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{\text {2 }}$, decomposes when heated to give a white solid and a mixture of Magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, decomposes when heated to
gases. One of the gases released is an oxide of nitrogen, X .
7.4 g of anhydrous magnesium nitrate is heated until no further reaction takes place.

What mass of X is produced?
A 1.5 g
B $\quad 2.3 \mathrm{~g}$

$$
\begin{aligned}
& \text { c } \\
& \begin{array}{rl}
3.0 \mathrm{~g}\left(\mathrm{NO}_{3}\right)_{2} & \\
0.05 \text { moles } \longrightarrow \mathrm{MgO} & +2 \mathrm{NO}_{2}+1 / \mathrm{O}_{2} \\
1 & 0.1 \text { mole mass }
\end{array} \\
&=\text { mole } \times \text { molar mass } \\
&=0.1 \times 46 \\
& \text { mass }=4.6 \mathrm{~g}
\end{aligned}
$$

5
$\longrightarrow I_{2}$ has more no. of elections thus more van der wal forces 14 Which statement explains why iodine is less volatile than chlorine? and tales more time to breakthese bonds

A Chlorine is more electronegative than iodine and so has more repulsion between its molecules.
(B) The greater number of electrons in iodine leads to larger temporary dipole-induced dipole forces. has nothing to do with volatility
c The I-I bond energy is smaller than the Cl-Cl bond energy. $\quad \rightarrow$ not pres ent in I_{2} or Cl_{2} bc2 they
T. The iodine molecules have stronger permanent dipole-permanent dipole forces. are non-polar

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

15 Ammonium carbonate is a crystalline solid. On gentle warming a reaction occurs, forming
ammonia as one product. $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{NH}_{3}+$
How are the carbonate ions behaving during this reaction?
A Brønsted-Lowry acid
(B) Bronsted-Lowry base bc2 ammonium ion loses H^{+}\& becomes NH_{3}

C oxidising agent
D reducing agent

16 One molecule of an oxide of element Z reacts with six molecules of water to produce an acidic compound.
What is element Z ?
A aluminium $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ insoluble
(B) phosphorus $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$

C silicon $\mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ no reaction
D sulfur $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
17 Which property shows an increase from magnesium to barium?
A the first ionisation energy of the elements decreases down the group
B the oxidising power of the metals decreases bc2 of increasing atomic radii
(C) the solubility of the hydroxides

D the solubility of the sulfates decreases down group II

19 Most modern cars are fitted with catalytic converters in the exhaust system.
Which three gases are removed by a catalytic converte?
A carbon monoxide, hydrocarbons, nitrogen oxides This is theory which
B carbon monoxide, carbon dioxide, nitrogen oxides
C carbon monoxide, nitrogen oxides, sulfur dioxide
D hydrocarbons, nitrogen oxides, sulfur dioxide

7
20 Compound X is shown.

What are Y and Z ?
Cos)
[Turn over

8
21 The table shows the molecular formulae of three molecules P, Q and R. None of the molecules
are cyclic. are cyclic.

Which molecules show a strong absorption between
spectra?
$10 \mathrm{~cm}^{-1}$ and $1750 \mathrm{~cm}^{-1}$ in their infra-red

spectra?
A Q only B R only (C) Q and R only $D P, Q$ and R only groups present in the above
22 Which row correctly shows the type of mechanism of each of the two reactions?

23 Ester X is shown.

$$
\mathrm{H}_{3} \xrightarrow{\mathrm{NaOH}(\mathrm{aq})}-\stackrel{\mathrm{O}}{\mathrm{C}} \stackrel{\stackrel{1}{\mathrm{C}}}{\mathrm{C}}-\mathrm{ON}
$$

ester Ester X is hydrolysed using aqueous sodium hydroxide.
What is the molecular formula of one of the products?
$A \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \quad$ B $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Na} \quad$ C $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$
D $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Na}$

24 Which reagent could be used to distinguish between propane-1,2-diol and ethane-1,2-diol?
(A) alkaline aqueous iodine reacts with only secondary alcohols \& give yellow ppt.

B aqueous acidified dichromate(VI) turns green in both dits due to primary \& secondary alcohols
C ethanol and a few drops of concentrated sulfuric acid
D sodium metal produces H_{2} with both dials

25 Which substance forms propanoic acid as one of the products when it reacts with hot (A)but-1-ene
 C 2-methylpropene $\quad \backslash_{\mathrm{H}}$ D 2-methylbut-1-ene

$$
C=C_{\substack{\text { alky }}}^{\substack{\text { alkn canc. }}} 0=C^{\text {acidified }} \text {-alkyl }
$$

26 The structure of damascenone is shown.
damascenone

Including damascenone, how many stereoisomers exist with this structural formula?
A 1 B
C 4
D 8

A 2
$\begin{array}{ll}\text { B } 3 & \text { C } 4\end{array}$

28 Ethene reacts with aqueous bromine to give two products, $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$ and $\mathrm{CH}_{2} \mathrm{BrCH} 2 \mathrm{OH}$.

A. Both products are obtained in this reaction by nucleophilic substitution

B. Both products are obtained in this reaction by nucleophilic addition.

Th. Both products can form hydrogen bonds with water. for hy dragen bonds, FN or O should be present with love pair of electrous
29 PVC is used as a packaging material.
What holds the different polymer strands together in a piece of solid PVC?
A covalent bonds
B hydrogen bonds
This is part of theory that you
C ionic bonds
(D) van der Waals' forces

10
30 The diagram shows the structure of buta-1,3-diene.
buta-1,3-diene
buta-1,3-diene

The addition reaction between buta-1,3-diene and two molecules of hydrogen bromide can produce three structurally isomeric products.
A 0
B 1
st one chiral centre?

D 3

11
Section B
For each of the questions in this section, one or more of the three numbered statements $\mathbf{1}$ to $\mathbf{3}$ may
be correct.
Decide whether each of the statements is or is not correct (you may find it helpful to put a tick against the statements that you consider to be correct).

The responses \mathbf{A} to \mathbf{D} should be selected on the basis of

A	B	C	D
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ are correct	$\mathbf{1}$ and $\mathbf{2}$ only are correct	$\mathbf{2}$ and $\mathbf{3}$ only are correct	$\mathbf{1}$ only is correct

No other combination of statements is used as a correct response,
Use of the Data Booklet may be appropriate for some questions.
31 Scientists are trying to synthesise a new element with proton number 119. The element is predicted to be a Group 1 element in Period 8 of the Periodic Table. 1 elechron inits outer most shell trausition elements
Which predictions are likely to be correct about this element?

If The outermost occupied orbital of one atom of this element will be an s orbital.
$\sqrt{2}$ The atomic radius will be the largest of the seven elements in Group 1. bcz it increases down group I
3. It will have a greater first ionisation energy than element 118. on periodic table, 118 would be a noble gas so it

32 Which reactions would have the reaction profile shown? C

1. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ neertralisation
$\sqrt{2} \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ \}decomposition which
,5 $2 \mathrm{MgO} \rightarrow 2 \mathrm{Mg}+\mathrm{O}_{2} \quad \begin{aligned} & \text { decompostion heating } \\ & \text { requies }\end{aligned}$

12
The responses A to D should be selected on the basis of

A	B	C	D
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ are correct	$\mathbf{1}$ and $\mathbf{2}$ only are correct	$\mathbf{2}$ and $\mathbf{3}$ only are correct	$\mathbf{1}$ only is correct

No other combination of statements is used as a correct response.
33 Which factors can lead to an increase in the rate of a reaction? A
$\sqrt{2}$ a lower activation energy an increase in temperature
$\sqrt{3 /}$ an increase in the concentration of a reactant $\underbrace{\text { activation energy, temp. concentration, surface asea }}_{\text {affect rate of reaction }}$ of reactouts
of reactants

34 Sodium and fluorine are both reactive elements. Two atoms are described. A

	F	Na	Na	Na^{+}	F	F
atomic number	9	11	P-11	$P-11$	P-9	$p-q$
nucleon number	19	23	$N-12$	$N-12$	$N-10$	$N-10$ $E-10$

Which statements about these two atoms, and the ions they can form, are correct?
$\sqrt{ }$ One Na atom has two more protons than one F^{-}ion.
2. One Na atom has two more neutrons than one F atom.

3 One Na^{+}ion has the same number of electrons as one F^{-}ion.
35 In the atmosphere, which transformations can involve sulfur dioxide as either a reagent or a
catalyst? D
$1 \mathrm{NO}_{2}$ to $\mathrm{NO} \mathrm{NO}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{SO}_{3}$
2) NO to $\mathrm{NO}_{2} \quad \mathrm{NO}+\mathrm{O}_{2} \longrightarrow \mathrm{NO}_{2}$
$3{\mathrm{CO} \text { to } \mathrm{CO}_{2}}^{1 \text { and } 3 \text { are not any of our choices hence } 1 \text { } 10}$

36 The bondP...... of the HBr molecule isQ...... than that of the HI molecule.
Which pairs of words correctly complete the above sentence?

	P	Q
1	energy	greater
2	length	less
3	polarity	greater

These properties are all part of theory
Bond length T down the group
Bond energy \downarrow down the group
Bond polarity is greater on the top

37 Compound X has the structure shown. C
compound X

Which statements about compound X are correct?
K X will decolourise cold, acidified $\mathrm{KMnO}_{4}(\mathrm{aq}) . \rightarrow$ this is used for unsaturated comp. and turns colourless from when dols are added on expansion of double bond $c=C$
2 X gives an orange precipitate with $2,4-\mathrm{DNPH}$ reagent. \rightarrow it gives orange pt. if aldehyde or ketone is present
3. X does not react with Tollens' reagent. \rightarrow it turns silver from colourless mixture if aldehyde is present

38 Propanal reacts with hydrogen cyanide. A
Which absorptions are present in the infra-red spectrum of the product?

1. a weak absorption in the range $2200-2250 \mathrm{~cm}^{-1} \rightarrow$ nitri les $\mathrm{C} \equiv \mathrm{N}$

2 a strong absorption in the range $3200-3600 \mathrm{~cm}^{-1} \rightarrow$ alcohols $\mathrm{O}-\mathrm{H}$
3 a strong absorption in the range $1040-1300 \mathrm{~cm}^{-1} \longrightarrow$ alcohols C-O
39 Which alcohols cannot be dehydrated to form alkenes? D
$1 / \mathrm{CH}_{3} \mathrm{OH}$
$2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
$3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

$\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ C N & H & H\end{array}$
\qquad

14
The responses \mathbf{A} to \mathbf{D} should be selected on the basis of

A	B	C	D
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ are correct	$\mathbf{1}$ and $\mathbf{2}$ only are correct	$\mathbf{2}$ and $\mathbf{3}$ only are correct	$\mathbf{1}$ only is correct

No other combination of statements is used as a correct response.
40 A reaction mechanism is shown. B

Which statements about this reaction ape correct?
Heterolytic bond fission occurs. $\mathrm{C} \stackrel{\mathrm{Br}}{\mathrm{B}} \mathrm{\delta}$
2 It is a substitution reaction. OH replaces Br
I OH^{-}behaves as an electrophile. \rightarrow specie that wants electron pair

16
BLANK PAGE

