

## **Cambridge Assessment International Education**

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

**MATHEMATICS** 

Paper 1 Pure Mathematics 1 (P1)

9709/11 May/June 2019

1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF9)

#### READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

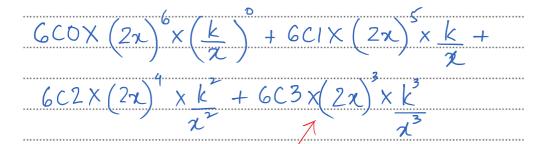
The total number of marks for this paper is 75.

This document consists of 21 printed pages and 3 blank pages.

Cambridge Assessment International Education

[Turn over

JC19 06\_9709\_11/RP © UCLES 2019


# BLANK PAGE

© UCLES 2019 9709/11/M/J/19

- 1 The term independent of x in the expansion of  $\left(2x + \frac{k}{x}\right)^6$ , where k is a constant, is 540.
  - (i) Find the value of k.

(ii)

[3]



| <br>            |               |
|-----------------|---------------|
| 6C3 X 8 x x k 3 | $= 160 c^{3}$ |
| ~35             |               |



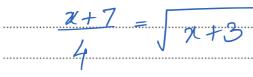
| For this value of $k$ , find the coefficient of $x^2$ in the expansion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2]    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (2x + 1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| $6C0 \times (2x)^{6} + 6C1 \times (2x)^{6} \times 1.5 + 6C2 \times (2x)^{4} \times 1.5 + 6C2$ | (1.5)2 |
| 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| $6C2 \times 16 \times 10^{2} \times (1.5)^{2} = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 540x   |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |

2 The line 4y = x + c, where c is a constant, is a tangent to the curve  $y^2 = x + 3$  at the point P on the curve.

(i) Find the value of c.

[3]

| X+C =   | 2+3 |
|---------|-----|
| <u></u> |     |
| ·····7  |     |


 $\chi^2 + 2c\chi + c^2 = 16\chi + 48$  $\chi^2 + 2c\chi - 16\chi + c^2 - 48 = 0$ 

 $b^{2}-4ac = 0$ a = 1, b = 2c-16,  $c = c^{2}-48$ 

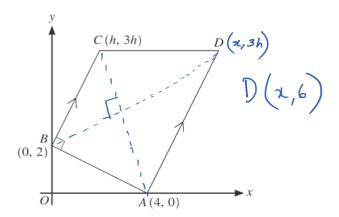
 $(2c-16)^{2}-4(c^{2}-48)=0$   $4e^{2}-64c+256-4c^{2}+192=0$  -64c=-448 c=7

(ii) Find the coordinates of *P*.

[2]



 $x^{2} + 14x + 49 = 16x + 48$   $y^{2} - 2x + 1 = 0$ 


 $\chi = 1, y = 2$  P(1,2)

© UCLES 2019

| A sector of of $r$ and $A$ .            | a circle of radius $r$ cm has an area of $A$ cm <sup>2</sup> . Express the perimeter of the sector in terms [4] |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| or / una / i                            | $\perp r^2 \theta = A$                                                                                          |
|                                         | 2 0 1                                                                                                           |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
| Drc                                     | length = 80                                                                                                     |
| 7700                                    |                                                                                                                 |
|                                         | V                                                                                                               |
|                                         | Y20 = A Make O the subject of formul                                                                            |
| •••••                                   |                                                                                                                 |
|                                         | 2                                                                                                               |
|                                         |                                                                                                                 |
|                                         | 2A = 0                                                                                                          |
|                                         | ~~                                                                                                              |
|                                         |                                                                                                                 |
| Per                                     | rimeter = r+r + r0                                                                                              |
|                                         | $=2\gamma + \gamma(2A)$                                                                                         |
|                                         | $-\frac{1}{2}\sqrt{\frac{2}{3}}$                                                                                |
|                                         | ( 7 - /                                                                                                         |
|                                         | =2r+2A                                                                                                          |
|                                         | <u>~</u>                                                                                                        |
|                                         | V                                                                                                               |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
| *************************************** |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |
|                                         |                                                                                                                 |

9709/11/M/J/19

© UCLES 2019



The diagram shows a trapezium ABCD in which the coordinates of A, B and C are (4, 0), (0, 2) and (h, 3h) respectively. The lines BC and AD are parallel, angle  $ABC = 90^{\circ}$  and CD is parallel to the x-axis.

| Find, by calculation, the value of $h$ . [3]   |
|------------------------------------------------|
| gradient of AB x gradient of BC = -1           |
| $\frac{0-2}{4-0} \times \frac{2-3h}{0-h} = -1$ |
|                                                |
| 2-3h = -2h $2 = h$                             |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |

| (ii) Hence find the coordinates of D.       | [3]  |
|---------------------------------------------|------|
| gradient of BC = gradient of AD             | •••• |
| B(0,2) C(2,6) M=2 6-0 = 2 $x-4$             |      |
| <b>1 1 1 1 1 1 1 1 1 1</b>                  |      |
|                                             |      |
| $\mathcal{X} = 7, y = 6$ $\mathcal{D}(7,6)$ |      |
|                                             |      |
|                                             |      |
|                                             |      |
|                                             |      |
|                                             |      |
|                                             |      |
|                                             | •••• |
|                                             |      |
|                                             | •••• |
|                                             | •••• |
|                                             |      |
|                                             |      |
|                                             | •••• |
|                                             | •••• |
|                                             |      |
|                                             |      |
|                                             |      |
|                                             |      |

- 5 The function f is defined by  $f(x) = -2x^2 + 12x 3$  for  $x \in \mathbb{R}$ .
  - (i) Express  $-2x^2 + 12x 3$  in the form  $-2(x + a)^2 + b$ , where a and b are constants.

[2]

| Make coefficient of 22 1 4 keep -3 sept                                      |
|------------------------------------------------------------------------------|
| -2(1-61)-3                                                                   |
| $-2\left[\left(x-\frac{6}{2}\right)^{2}-1\times\left(-6\right)^{2}\right]-3$ |
| $-2\left(\chi-3\right)^2+15$                                                 |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
| State the greatest value of f(v)                                             |
| State the greatest value of $f(x)$ . [1]                                     |

© UCLES 2019

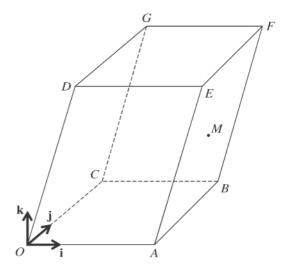
(ii)

The function g is defined by g(x) = 2x + 5 for  $x \in \mathbb{R}$ .

| Find the values of x for which $gf(x) + 1 = 0$ . | [3] |
|--------------------------------------------------|-----|
| $9\left(-2x^{2}+12x-3\right)+1=0$                |     |
| $2(-2x^{2}+12x-3)+5+1=0$                         |     |
| $-4x^{2} + 24x - 6 + 6 = 0$ $4x = 24$            |     |
| 4x = 24 $x = 6  or  0$                           |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |
|                                                  |     |

| (i) Prove the identity $\left(\frac{1}{\cos x} - \tan x\right)^2 = \frac{1 - \sin x}{1 + \sin x}$ . | [4]      |
|-----------------------------------------------------------------------------------------------------|----------|
| - 2 tanz + tanzz                                                                                    |          |
| - 2 sin x + sin x                                                                                   |          |
|                                                                                                     |          |
| $\frac{1-2\sin x + \sin^2 x}{\cos^2 x}$                                                             |          |
| $\cos^2 x = (1 + \sin x)(1 - \sin x)$                                                               |          |
| Sin2x-28inx+1                                                                                       |          |
| (1+sinx)(1-sinx)                                                                                    |          |
| (1-sinx) (1=sinx)                                                                                   |          |
| (+sinx)(1-sinx)                                                                                     | 1 + sinx |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |

| Hence solve the equation $\left(\frac{1}{\cos 2x} - \tan 2x\right)^2 = \frac{1}{3}$ for $0 \le x \le \pi$ . |       |
|-------------------------------------------------------------------------------------------------------------|-------|
| $\frac{1-\sin 2x}{1+\sin 2x} = \frac{1}{3}$                                                                 |       |
| 1+sin 22 3                                                                                                  |       |
| $3 - 3\sin 2x = 1 + \sin 2x$                                                                                |       |
| $2 = 4\sin 2x$                                                                                              |       |
| Sin 2x = 1                                                                                                  | ••••• |
| $\frac{81/1}{2} = \frac{1}{2}$                                                                              |       |
| lets assume sinx = 1                                                                                        | ••••• |
| Lets assume sinx = 1                                                                                        |       |
|                                                                                                             |       |
| $\chi = \frac{\pi}{1}$ , $\frac{\zeta}{6}\pi$                                                               |       |
| 6                                                                                                           |       |
| $\frac{\sin x}{6} = \frac{\pi}{6}, \frac{5\pi}{6}$                                                          |       |
| 6                                                                                                           |       |
| $Sin 2\pi = (\pi) \cdot \pi \cdot (C\pi) \cdot \pi$                                                         |       |
| $\sin 2x = \frac{\pi}{6} \cdot 2 + \frac{5\pi}{6} = 2$                                                      |       |
|                                                                                                             | ••••• |
| cin 2x - II CI                                                                                              | ••••• |
| $\sin 2x = \overline{1}$ , $\overline{5}\overline{1}$                                                       |       |
| 12 12                                                                                                       |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             | ••••• |


9709/11/M/J/19

[Turn over

Quick Notes Page 11

© UCLES 2019





The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of  $\overline{AF}$ .

Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to OA and OC respectively and the unit vector  $\mathbf{k}$  is vertically upwards. The position vectors of A and D are given by  $\overrightarrow{OA} = 8\mathbf{i}$  and  $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$ .

| (i) Express each of the vectors $\overrightarrow{AM}$ and $\overrightarrow{GM}$ in terms of i, j and k.       | [3]    |
|---------------------------------------------------------------------------------------------------------------|--------|
| $\overrightarrow{AM} = \overrightarrow{AF} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF}$ |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                         | PB = 8 |
| and $\overrightarrow{BF} = \overrightarrow{DD} = 3i + 3i$                       | 10k    |
| AF = 3i + 8i + 10k                                                                                            |        |
| AF = 3i + 8j + 10k $AM = 3i + 4j + 5k$                                                                        |        |
| GM = GE + EA + AM                                                                                             |        |
|                                                                                                               |        |
| GD+DE -OD                                                                                                     |        |
| GD+DE - DD $GM = -8j + 8i - 3i - 10k + 3i + 4j$                                                               | +Sk    |
| 61M = 6.51-41-5K                                                                                              |        |

© UCLES 2019

| (ii) Use a scalar product to find angle <i>GMA</i> correct to the nearest degree.  | [4]                        |
|------------------------------------------------------------------------------------|----------------------------|
| $\overrightarrow{GM} = 6.5i - 4j - 5k$                                             |                            |
| 5,1V1 - 0 5 7 3 K                                                                  |                            |
|                                                                                    |                            |
| AM = 1.51+41+5k                                                                    |                            |
| J                                                                                  |                            |
| $\sqrt{(6.5)^2+(-4)^2+(-5)^2} \times \sqrt{(1.5)^2+(4)^2+(5)^2} \cos \theta = 6.5$ | 1.5                        |
| (-4)                                                                               | ·· <del>··[</del> ]······· |
| 60 cos0 = -31.25                                                                   | 2 /                        |
| 0 = 121.4°                                                                         |                            |
|                                                                                    |                            |
| //////                                                                             |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |
|                                                                                    |                            |

| 8 | (a) | The third and fourth terms of a geometric progression are 48 and 32 respectively. Find the sum to infinity of the progression. $a_{N} = a_{1} \gamma^{N-1}$ [3] |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     | $\frac{a}{3} = 48, a = 32$ $S_{\infty} = \underline{a}$                                                                                                         |
|   |     | $Y = \frac{32}{48} = \frac{2}{3}$                                                                                                                               |
|   |     |                                                                                                                                                                 |
|   |     | $48 = a \times \left(\frac{2}{3}\right) \longrightarrow a = 108$                                                                                                |
|   |     |                                                                                                                                                                 |
|   |     | $S_{\infty} = 108 = 324$                                                                                                                                        |
|   |     | 1-2/3                                                                                                                                                           |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |
|   |     |                                                                                                                                                                 |

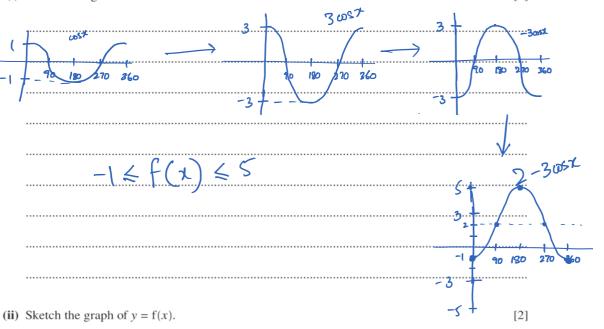
(b) Two schemes are proposed for increasing the amount of household waste that is recycled each week

Scheme A is to increase the amount of waste recycled each month by 0.16 tonnes.

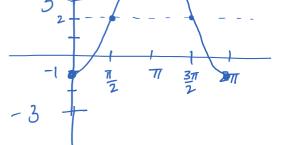
Scheme B is to increase the amount of waste recycled each month by 6% of the amount recycled in the previous month.

The proposal is to operate the scheme for a period of 24 months. The amount recycled in the first month is 2.5 tonnes.

For each scheme, find the total amount of waste that would be recycled over the 24-month period.


[5]

| Scheme A amount of recycled waste 1 by 0.16 tonnes each more                           |
|----------------------------------------------------------------------------------------|
| 2.5, 2.66, 2.82, until n = 24                                                          |
| $\sim 10^{\circ}$                                                                      |
| Use airthmetic sequence formula $S_{n} = \frac{n}{2} (2a + d(n-1))$                    |
| $S_n = \frac{24}{2} \left( 2(25) + \delta \cdot 16(24-1) \right)$                      |
| 104.16 tonnes of waste that is recycled                                                |
| Scheme B amount of recycled waste 1 by 6 / each month                                  |
| 2.5, 2.65, 2.809, until n = 24                                                         |
| 2.5, 2.65, 2.809, until $n = 24$<br>Use geometric sequence formula<br>$S_n = a(1-r^n)$ |
| $S_{N} = 2.5 \left( 1 - 1.06^{24} \right)$ $1 - 1.06$                                  |
| 127.04 bonnes of waste that is recycled.                                               |


9 The function f is defined by  $f(x) = 2 - 3\cos x$  for  $0 \le x \le 2\pi$ .

(i) State the range of f.

[2]



5+ 2-305



© UCLES 2019

The function g is defined by  $g(x) = 2 - 3\cos x$  for  $0 \le x \le p$ , where p is a constant.

| State the largest value of p for | which g has an inverse.                                                   | [1]        |
|----------------------------------|---------------------------------------------------------------------------|------------|
| y = 2-3cosx                      | Domain of $f'(x) \rightarrow$                                             | -15x 55    |
| 05-4 (2-x) = y                   | Domain of $f^{-1}(x) \rightarrow Hence 0 \le f$                           | -1/2) < 18 |
| 3                                | - Huce 07)                                                                |            |
|                                  | p.= 1/                                                                    |            |
|                                  | I                                                                         |            |
|                                  |                                                                           |            |
| For this value of p, find an exp | pression for $g^{-1}(x)$ .                                                | [2]        |
|                                  |                                                                           |            |
| <i>a</i> / . )                   | $-9$ 2 $\sim$ $0$                                                         |            |
| $\frac{1}{2}$                    | $= 2 - 3\cos x  0 \le x \le \pi$ $= x \longrightarrow g^{-1}(x) = \infty$ |            |
| V                                |                                                                           |            |
| 651 (2-y)                        | $= \chi \longrightarrow a^{-1}/\chi = \omega$                             | 5/2-2      |
|                                  |                                                                           | 2          |
| \ 5\ /                           | ······································                                    | ر ت        |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
| •••••                            |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |
|                                  |                                                                           |            |

- 10 A curve for which  $\frac{d^2y}{dx^2} = 2x 5$  has a stationary point at (3, 6).
  - (i) Find the equation of the curve.

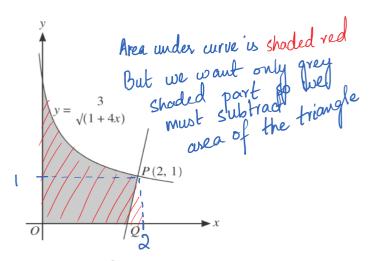
[6]

Use  $\frac{dy}{dx} = 0$ 

 $\frac{dy}{dx} = \int 2x - S \longrightarrow \chi^2 - S\chi + C$ 

 $\frac{(3)^2 - 5(3) + C}{dy} = x^2 - 5x + 6$ 

 $\int \chi^2 - 5\chi + 6 \longrightarrow y = \chi^3 - 5\chi^2 + 6\chi + C$ 


 $6 = \frac{(3)^{3} - 5(3)^{2} + 6(3) + C}{2}$ 

C = 3 2

 $y = x^{3} - 5x^{2} + 6x + 3$ 3 2 2

© UCLES 2019

| (ii)  | Find the <i>x</i> -coordinate of the other stationary point on the curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [1] |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | $dy = 0 \longrightarrow \chi^2 - 5\chi + 6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       | $\frac{dy}{dx} = 0 \longrightarrow x^2 - 5x + 6 = 0$ $\frac{dx}{dx} = \frac{3}{x} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (iii) | Determine the nature of each of the stationary points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [2] |
| U     | $\frac{d^{2}y}{dx^{2}} = 2x - 5$ $\frac{d^{2}y}{dx^{2}} = 2(3) - 5 = 1 + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = $ |     |
|       | $dx^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|       | Use $x = 3$ , $2(3) - 5 = 1$ thus $(3)$ , is a minimum point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6)  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       | Use $x = 2$ , $2(2) - 5 = -1$ thus (à is a maximum point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37  |
|       | 15 a maximum point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |



The diagram shows part of the curve  $y = \frac{3}{\sqrt{(1+4x)}}$  and a point P(2, 1) lying on the curve. The normal to the curve at P intersects the x-axis at Q.

| (i) Show that the x-coordinate of $Q$ is $\frac{16}{9}$ .                                                                                                                                        | [5]         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| For this, we must first have gradient of the non                                                                                                                                                 | nal         |
| For this, we must first have gradient of the non. So that we can get its equation                                                                                                                |             |
|                                                                                                                                                                                                  |             |
| Gradient of curve at Px gradient of normal = -                                                                                                                                                   |             |
| gradient of curve = dy dy = -6 (1+4x)                                                                                                                                                            |             |
| Gradient of curve at $P \rightarrow -6 (1+4(2))^{\frac{3}{2}}$ is $-2$                                                                                                                           | )           |
| Gradient of curve at $P \rightarrow -6 \left(1+4(2)\right)^{\frac{3}{2}}$ is $-2$<br>Gradient of normal at $P \rightarrow -1 \div -2 = 9$                                                        | 1           |
| Equation of normal $\rightarrow y-1=\frac{9}{2}(\chi-2)$ using $(2)$ $y=9\chi-8$ At Q, normal intersects $\chi-a\chi = 0$ $\frac{9\chi-8}{2} = 0 \longrightarrow \chi = \frac{16}{9} \qquad y=0$ |             |
| At Q, normal intersects x-axis 2 On x                                                                                                                                                            | <br>-ax 1≥) |
| $9x-8=0\longrightarrow x=16 \qquad y=7$                                                                                                                                                          | )           |
| 2                                                                                                                                                                                                |             |

© UCLES 2019

| (ii) | Find, showing | a11 | necessary | working | the | area | of | the | shaded | region |
|------|---------------|-----|-----------|---------|-----|------|----|-----|--------|--------|

| <u></u>              |                              |
|----------------------|------------------------------|
| A of shaded region = | $\frac{3}{}$ — A of triangle |
|                      | 1+42                         |

[6]

$$\int_{0}^{2} 3(1+4x)^{\frac{1}{2}} = 3\left[2(1+4x)^{\frac{1}{2}} \times 1\right]$$

$$\frac{3}{2} \left[ \sqrt{1+4x} \right] = 4.5 - 1.5 = 3$$

A of triangle = 
$$\frac{1}{2} \times \left(\frac{2-16}{9}\right) \times 1 = \frac{1}{9}$$

A of shaded region = 
$$3 - \frac{1}{9}$$

| <br>                                  |
|---------------------------------------|
| 01                                    |
|                                       |
| · · · · · · · · · · · · · · · · · · · |
|                                       |
| <br>                                  |
|                                       |
|                                       |
|                                       |

© UCLES 2019

## **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
|                                                                                                                                 |                |  |  |  |
| © UCLES 2019                                                                                                                    | 9709/11/M/J/19 |  |  |  |

# BLANK PAGE

© UCLES 2019 9709/11/M/J/19

### BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019